# 6204960 CP 123560 AN

# Introduction to Soil Physics

## DANIEL HILLEL

Department of Plant and Soil Sciences University of Massachusetts Amherst, Massachusetts



## ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers Orlando San Diego New York

Austin London Montreal Sydney Tokyo Toronto



## Contents

### Preface

#### xiii

## Part I BASIC RELATIONSHIPS

## 1. The Task of Soil Physics

## 2. General Physical Characteristics of Soils

| A. | Introduction                                       | 5  |
|----|----------------------------------------------------|----|
| B. | Soil Physics Defined                               | 6  |
| C. | Soil as a Disperse Three-Phase System              | 6  |
| D. | Volume and Mass Relationships of Soil Constituents | 8  |
| E. | The Soil Profile                                   | 12 |
|    | Sample Problems                                    | 14 |
|    |                                                    |    |

## Part II THE SOLID PHASE

## 3. Texture, Particle Size Distribution, and Specific Surface

| Α. | Introduction               | 21 |
|----|----------------------------|----|
| Β. | Soil Texture               | 22 |
| C. | Nature of Clay             | 25 |
| D. | Soil Classes               | 28 |
| E. | Particle Size Distribution | 30 |

vii

|    | F.<br>G. | Analysis                           | 31<br>34<br>37 |
|----|----------|------------------------------------|----------------|
| ١. | So       | il Structure and Aggregation       |                |
|    | Α.       | Introduction                       |                |
|    | Β.       | Types of Soil Structure            | 40             |
|    | C.       | Structure of Granular Soils        | 41             |
|    | D.       | Structure of Aggregated Soils      | 42             |
|    | E.       | Characterization of Soil Structure | 43             |
|    | F.       | Aggregate Stability                | 46             |
|    | G.       | Soil Crusting                      | 49             |
|    |          | Sample Problems                    | 51             |
|    |          |                                    |                |

## Part III THE LIQUID PHASE

## 5. Soil Water: Content and Potential

viii

4

| Α. | . Introduction                                  |    |
|----|-------------------------------------------------|----|
| Β. | The Soil-Water Content (Wetness)                | 57 |
| C. | Measurement of Soil Wetness                     | 58 |
| D. | Energy State of Soil Water                      | 59 |
| E. | Soil-Water Potential                            | 64 |
| F. | Quantitative Expression of Soil-Water Potential | 66 |
| G. | Soil-Moisture Characteristic Curve              | 73 |
| H. | Hystoracia                                      | 75 |
| I. | Measurement of Soil-Moisture Potential          | 78 |
|    | Sample Problems                                 | 80 |
|    |                                                 | 86 |

#### 6. Flow of Water in Saturated Soil

| Α. | Introduction                                             |     |
|----|----------------------------------------------------------|-----|
| Β. | Darcy's Law                                              | 90  |
| C. | Gravitational, Pressure, and Total Hydraulic Heads       | 92  |
| D. | Flow in a Vertical Column                                | 95  |
| E. | Flux, Flow Velocity, and Tortuosity                      | 97  |
| F. | Hydraulic Conductivity Permeability and El               | 99  |
| G. | Measurement of Hydraulic Conductivity of Saturated Soils | 100 |
|    | Sample Problems                                          | 103 |
|    |                                                          | 104 |

## 7. Flow of Water in Unsaturated Soil

|    | Introduction                                            |     |
|----|---------------------------------------------------------|-----|
| Β. | Comparison of Flow in Unsaturated versus Saturated Soil | 107 |
|    | Chisaturated Versus Saturated Soil                      | 107 |

#### CONTENTS

8.

CONTENTS

51 52

|    | a dia and Watnace                                                              | 110 |
|----|--------------------------------------------------------------------------------|-----|
| C. | Relation of Conductivity to Suction and Wetness                                | 113 |
| D. | General Equation of Unsaturated Flow                                           | 114 |
| Ε. | Hydraulic Diffusivity<br>Measurement of Unsaturated Hydraulic Conductivity and |     |
| F. | Measurement of Unsaturated Hydraune Condition                                  | 117 |
| G. | Diffusivity in the Laboratory                                                  | 118 |
| 0. | Profiles in Situ                                                               | 124 |
| H. | Vapor Movement                                                                 | 126 |
|    | Sample Problems                                                                |     |
|    |                                                                                |     |

## Part IV THE GASEOUS PHASE

| Soi | Air and Aeration                           |     |
|-----|--------------------------------------------|-----|
|     |                                            | 135 |
| Á.  | Introduction                               | 136 |
| Β.  | Volume Fraction of Soil Air                | 138 |
| C   | Composition of Soil Air                    | 139 |
| D.  | Convective Flow of Soil Air                | 142 |
| E.  | Diffusion of Soil Air                      | 144 |
| F.  | Soil Respiration and Aeration Requirements | 147 |
| G.  | at a second of Soil Aeration               | 150 |
| 0.  | Sample Problems                            |     |

## Part V COMPOSITE PROPERTIES AND BEHAVIOR

| Α. | Introduction                      |  |
|----|-----------------------------------|--|
| B. | Modes of Energy Transfer          |  |
| C. | Conduction of Heat in Soil        |  |
| D. | Volumetric Heat Capacity of Soils |  |
| E. | Thermal Conductivity of Soils     |  |
| F. | Thermal Regime of Soil Profiles   |  |
|    | Sample Problems                   |  |
|    |                                   |  |

176 A. Introduction 177 B. Soil Compactibility in Relation to Wetness 180 C. Occurrence of Soil Compaction in Agricultural Fields 181 D. Pressures Caused by Machinery 188 E. Consequences of Soil Compaction

x

| CON | TEATT | 0 |
|-----|-------|---|
| uun | TENT  | 5 |

200

201

203 204

F. Control of Soil Compaction G. Soil Consolidation Sample Problems 191 196 11. Tillage and Soil Structure Management

# A. Introduction B. Traditional and Modern Approaches to Tillage C. Problems of Tillage Research D. Operation of Tillage Tools

## Part VI THE FIELD-WATER CYCLE AND ITS MANAGEMENT

## 12. Infiltration and Surface Runoff

| A. | Introduction                                      |     |
|----|---------------------------------------------------|-----|
| В. | "Infiltration Capacity" or Infiltrability         | 211 |
| C. | Profile Moisture Distribution during Infiltration | 212 |
| D. | Infiltrability Equations                          | 212 |
| E. | Basic Infiltration Theory                         | 213 |
| F. | Infiltration into Layered Profiles                | 219 |
| G. | Infiltration into Crust-Topped Soils              | 219 |
| H. | Rain Infiltration                                 | 226 |
| I. | Surface Runoff                                    | 228 |
|    | Sample Problems                                   | 230 |
|    |                                                   | 231 |
|    |                                                   |     |

## 13. Internal Drainage and Redistribution Following Infiltration

| Α.                         | Introduction                                                                                                                                                                                                                                  |                                               |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| B.<br>C.<br>D.<br>E.<br>F. | Internal Drainage in Thoroughly Wetted Profiles<br>Redistribution of Soil Moisture in Partially Wetted Profiles<br>Analysis of Redistribution Processes<br>"Field Capacity"<br>Summary of Factors Affecting Field Capacity<br>Sample Problems | 235<br>236<br>238<br>240<br>243<br>247<br>248 |
| ~                          | Soll Compaction and Comedidation                                                                                                                                                                                                              | 240                                           |

## 14. Groundwater Drainage

| A. | Introduction              |
|----|---------------------------|
| Β. | Flow of Unconfined Ground |

Flow of Unconfined Groundwater

#### CONTENTS

| 25 |
|----|
| 25 |
| 25 |
| 25 |
| 26 |
| 26 |
|    |

### 15. Evaporation from Bare-Surface Soils

| Α. | Introduction                                         | 268 |
|----|------------------------------------------------------|-----|
| Β. | Physical Conditions                                  | 269 |
| C. | Evaporation in the Presence of a Water Table         | 271 |
| D. | Hazard of Salinization Due to High Water Table       | 274 |
| E. | Evaporation in the Absence of a Water Table (Drying) | 275 |
| F. | Analysis of the First and Second Stages of Drying    | 278 |
| G. | Reduction of Evaporation from Bare Soils             | 281 |
|    | Sample Problems                                      | 283 |

#### 16. Uptake of Soil Moisture by Plants

| A. | Introduction                                             | 28  |
|----|----------------------------------------------------------|-----|
| Β. | The Soil-Plant-Atmosphere Continuum                      | 29  |
| C. | Basic Aspects of Plant-Water Relations                   | 29  |
| D. | Root Uptake, Soil-Water Movement, and Transpiration      | 293 |
| E. | Classical Concepts of Soil-Water Availability to Plants  | 29  |
| F. | Newer Concepts of Soil-Water Availability to Plants      | 300 |
| G. | Irrigation, Water-Use Efficiency, and Water Conservation | 30  |

#### 17. Water Balance and Energy Balance in the Field

| Α. | Introduction                                        | 304 |
|----|-----------------------------------------------------|-----|
| Β. | Water Balance of the Root Zone                      | 305 |
| C. | Evaluation of the Water Balance                     | 308 |
| D. | Radiation Exchange in the Field                     | 309 |
| E. | Total Energy Balance                                | 311 |
| F. | Transport of Heat and Vapor to the Atmosphere       | 313 |
| G. |                                                     | 315 |
| H. | Potential Evapotranspiration (Combination Formulas) | 316 |
|    | Sample Problems                                     | 319 |

## Bibliography

321

xi

Index

250 251